Our team, Hibikino-Musashi@Home (the shortened name is HMA), was founded in 2010. It is based in the Kitakyushu Science and Research Park, Japan. We have participated in the RoboCup@Home Japan open competition open platform league every year since 2010. Moreover, we participated in the RoboCup 2017 Nagoya as open platform league and domestic standard platform league teams. Currently, the Hibikino-Musashi@Home team has 20 members from seven different laboratories based in the Kyushu Institute of Technology. In this paper, we introduce the activities of our team and the technologies.
translated by 谷歌翻译
最近,已经开发了各种视觉变压器作为对远程依赖性建模的能力。在当前的基于变压器的主骨用于医疗图像分割的骨架中,卷积层被纯变压器替换,或者将变压器添加到最深的编码器中以学习全球环境。但是,从规模的角度来看,主要有两个挑战:(1)尺度内问题:在每个尺度中提取局部全球线索所缺乏的现有方法,这可能会影响小物体的信号传播; (2)尺度间问题:现有方法未能从多个量表中探索独特的信息,这可能会阻碍表示尺寸,形状和位置广泛的对象的表示形式学习。为了解决这些局限性,我们提出了一个新颖的骨干,即比例尺形式,具有两个吸引人的设计:(1)尺度上的尺度内变压器旨在将基于CNN的本地功能与每个尺度中的基于变压器的全球线索相结合,在行和列的全局依赖项上可以通过轻巧的双轴MSA提取。 (2)一种简单有效的空间感知尺度变压器旨在以多个尺度之间的共识区域相互作用,该区域可以突出跨尺度依赖性并解决复杂量表的变化。对不同基准测试的实验结果表明,我们的尺度形式的表现优于当前最新方法。该代码可公开可用:https://github.com/zjugivelab/scaleformer。
translated by 谷歌翻译
虽然U-Net在医学图像分割任务中取得了巨大的成功,但它缺乏明确模拟远程依赖性的能力。因此,视觉变压器最近被出现为替代分割结构,以便通过自我关注捕获远程相关性的先天能力(SA)。然而,变压器通常依赖于大规模的预训练并具有高的计算复杂性。此外,SA只能在单个样本内模拟自我亲和力,忽略整个数据集的潜在相关性。为了解决这些问题,我们提出了一种名为混合变压器模块(MTM)的新型变压器模块,用于同时和内部内部学习。 MTM首先通过我们设计精心设计的本地全球高斯加权自我关注(LGG-SA),有效地计算自我亲创。然后,它通过外部注意力(EA)挖掘数据样本之间的连接。通过使用MTM,我们构造一个名为混合变压器U-NET(MT-UNET)的U形模型,以进行准确的医学图像分割。我们在两个不同的公共数据集上测试我们的方法,实验结果表明,该方法达到了更好的性能,对其他最先进的方法进行了更好的性能。代码可在:https://github.com/dootmaan/mt-unet。
translated by 谷歌翻译
Large-scale vision-language models such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such zero-shot performance of CLIP-based models does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). We investigate why this is the case, and report an interesting phenomenon of CLIP, which we call the Concept Association Bias (CAB), as a potential cause of the difficulty of applying CLIP to VQA and similar tasks. CAB is especially apparent when two concepts are present in the given image while a text prompt only contains a single concept. In such a case, we find that CLIP tends to treat input as a bag of concepts and attempts to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. For example, when asked for the color of a lemon in an image, CLIP predicts ``purple'' if the image contains a lemon and an eggplant. We demonstrate the Concept Association Bias of CLIP by showing that CLIP's zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. lemon) and an attribute (e.g. its color). On the other hand, when the association between object and attribute is weak, we do not see this phenomenon. Furthermore, we show that CAB is significantly mitigated when we enable CLIP to learn deeper structure across image and text embeddings by adding an additional Transformer on top of CLIP and fine-tuning it on VQA. We find that across such fine-tuned variants of CLIP, the strength of CAB in a model predicts how well it performs on VQA.
translated by 谷歌翻译
由于缺乏可用的数据集,模型和标准评估指标,因此以多模式数据为条件的现实,生动和类似人类的合成对话手势仍然是一个未解决的问题。为了解决这个问题,我们构建了人体表达式 - aauio-Text数据集,Beat,它具有76小时,高质量的,高质量的多模式数据,这些数据从30位扬声器中捕获了八种不同的情绪,用四种不同的语言,ii)32数以百万计的框架级别的情感和语义相关注释。我们对BEAT的统计分析表明,除了与音频,文本和说话者身份的已知相关性外,对话式手势与面部表情,情感和语义的相关性。基于此观察结果,我们提出了一个基线模型,即级联运动网络(CAMN),该模型由以上六种模式组成,该模式在级联的架构中建模以进行手势合成。为了评估语义相关性,我们引入了指标,语义相关性召回(SRGR)。定性和定量实验证明了指标的有效性,地面真相数据质量以及基线的最先进性能。据我们所知,BEAT是用于研究人类手势的最大运动捕获数据集,这可能有助于许多不同的研究领域,包括可控的手势合成,跨模式分析和情感手势识别。数据,代码和模型可在https://pantomatrix.github.io/beat/上获得。
translated by 谷歌翻译
微调加强学习(RL)模型由于缺乏大规模的现成数据集以及不同环境之间可传递性的较高差异而变得具有挑战性。最近的工作着眼于从序列建模的角度来应对离线RL,并通过引入变压器体系结构的结果得到改进的结果。但是,当模型从头开始训练时,它会遭受缓慢的收敛速度。在本文中,我们希望利用这种强化学习作为序列建模的表述,并研究在离线RL任务(控制,游戏)上进行填充时,在其他领域(视觉,语言)上进行了预训练的序列模型的可传递性。为此,我们还提出了改善这些域之间传递的技术。结果表明,在各种环境上的收敛速度和奖励方面,表现出一致的性能,加速了3-6倍的训练,并使用Wikipedia-pretrenained and GPT2语言模型在各种任务中实现了最先进的绩效。我们希望这项工作不仅为RL利用通用序列建模技术和预训练模型的潜力带来启发,而且还激发了未来的工作,在完全不同领域的生成建模任务之间共享知识。
translated by 谷歌翻译
我们分析了在线性模型中同时支持恢复和估计的同时支持恢复和估计,具有独立的且相同分布的正常误差。我们基于随机栅极(STG)[YLNK20]的非线性惩罚来应用惩罚最小方估计值,以估计系数。考虑到高斯设计矩阵,我们表明在$ \β^ * $的尺寸和稀疏性的合理条件下,基于STG的估计器会聚到真实数据生成系数向量,并且还检测其具有高概率的支持集。我们提出了一种新的基于投影基于投影的线性模型设置,以提高现有的STG估算器,最初设计用于一般非线性模型。我们的新程序优于许多古典估算器,用于在合成数据分析中支持恢复。
translated by 谷歌翻译